台灣風險分析學會

Taiwan Society for Risk Analysis

Resources
學會會刊

 

 

 2022年第23

風力發電與風力渦輪機症候群      

  童綜合醫院醫學研究部助理研究員 邱嘉斌
   Release: Nov 10, 2022

 

風力發電的發展主要是人們因為石油危機才被重視並快速發展,而且基於風力發電伴隨污染排放減少的優點,因此各國均視為「潔淨能源」(或稱「綠色能源」)而日益重視,風力發電自80年代開始受到西方各國重視以來,至今全球風力發電量每年快速成長,在2016年已成為全球各類電力來源第5大(3.8%),次於煤(38.3%)、天然氣(23.1%)、水力(16.6%)及核能(10.4%),約是太陽能光電(1.3%)的3倍左右[1]。全球風能協會(Global Wind Energy Council, GWEC)公布的全球風能報告指出,在2021年新設的陸域風力發電裝置量總計72.5GW,前3大為中國大陸(佔總量的42.34%)、美國(17.62%)及巴西(5.31%),而新設的離岸風力發電裝置量總計21.1GW,前3大為中國大陸(佔總量的80.02%)、英國(10.99%)及越南(3.70%) (如圖1所示)[2]。台灣風力發電開發最早始於2000年,政府陸續頒布「風力發電示範系統設置補助辦法」及「風力發電離岸系統示範獎勵辦法」[3,4],陸續啟動風力發電的設置,直至目前風力發電裝置量及發電量統計如圖2所示[5],累計裝置容量於2011年到達500MW,直至2021年則已達1,000MW,而總發電量於2010年達到1,000GWh/年,於2020年則已超過2,000GWh/年,近5年雖有增加裝置容量,然而總發電量有稍微趨緩的趨勢。

  

1. 全球2021年新設陸域及離岸風力發電裝置量統計

(資料來源Global wind report, https://gwec.net/global-wind-report-2022/ [2])

 

2. 台灣歷年風力發電裝置量與發電量統計

(資料來源經濟部能源局[5])

 

「風力渦輪機症候群」(wind turbine syndrome)指的是20-200赫茲的低頻噪音對人體的生心理影響。風力渦輪機症候群潛在可能的健康影響,包含睡眠障礙、頭痛、前庭功能障礙、眩暈、耳鳴、耳部壓迫感或疼痛感、記憶與感知失調、睡眠障礙、情緒障礙等[6-13]。然而,即使有相關的研究但仍有限,研究結果也不一致,同時台灣本土的相關研究更是稀少[14,15]。在台灣,風力發電機組在介於2-12 m/s的風速下所量測到的平均低頻噪音暴露值(LW,A)介於93.2-110.4 dB(分貝)之間,不同廠牌則發現有所差異,風速每增加1 m/s則平均低頻噪音暴露值增加介於1.4-1.9 dB之間[14]。而針對鄰近風力渦輪機500公尺內的30位住民的研究中,心率變異率(heart rate variability)會隨低頻噪音暴露值增加7.86 dB而增快3.39% (95%信賴區間: 0.15-6.52%),且同時發現在室內及室外的低頻噪音暴露值差異值最大可差距13.7 dB[15]。

風力渦輪機工作人員在裝設和維修時均可能會使用噪音極大的動力機械工具及發電機,而離岸工作包含運輸及打樁也都會發出噪音[16]。波蘭研究發現,風力渦輪機工作人員在3公里範圍內,有68.1%受到輕度噪音滋擾,17.0%受到中度噪音滋擾,9.3%受到重度噪音滋擾[17]。伊朗研究分析風場工作者受到低頻噪音的影響,發現噪音暴露與勞工的一般健康呈現負相關,高噪音組員工的憂鬱和失眠分數比低噪音組高1.6倍,高噪音組員工受到噪音滋擾的影響是低噪音組的2倍[18,19]。德國研究發現,268位離岸風力渦輪機工作人員有2/3以上有失眠及睡眠問題,噪音對睡眠的影響勝算比達到1.61 (95%信賴區間:1.19-2.16)[20]。另有研究指出,在高度噪音暴露勞工(85 ± 8 dBA)比低度噪音暴露勞工(59 ± 4 dBA)有顯著較高的全身血管阻力(systemic vascular resistance, SVR)以及顯著較低的全身血管順應性(systemic vascular compliance, SVC)、橈動脈順應性(brachial artery compliance, BAC)及橈動脈伸展性(brachial artery distensibility, BAD)[21]。

與噪音暴露的同時,振動危害對鄰近住戶也和風力渦輪機運轉有關[22];而電磁波也是風場工作者可能暴露的危害,其來源包含電網連接線、風機發電機、變壓器、地下電纜等,長期暴露甚至有罹癌風險[23,24];炫影(shadow flicker)是風力發電獨特的危害,在風機運轉期間較可能會影響風場工作者及鄰近居民,目前雖然尚無實質證據指出炫影暴露的健康效應,但仍有報告指出其可能與頭痛、頭暈、噁心、疲勞等暫時症狀有關[13];另外,在風機維修作業中,可能會暴露有毒物質包含環氧樹脂(epoxy resin)、玻璃纖維等污染物,造成工作人員的健康危害[25,26];最後,風力渦輪機工作人員主要都室外環境操作維護,雷擊、強風及極端氣溫都是工作人員可能暴露的氣象危害[27,28]。

 

參考文獻

1. International Energy Agency (IEA). Data and statistics. Available online on Oct 21, 2022; https://www.iea.org/data-and-statistics.

2. Global Wind Energy Council (GWEC). Global Wind Report 2022, Available online on Nov 4, 2022; https://gwec.net/global-wind-report-2022/ .

3. 法務部,風力發電示範系統設置補助辦法,2003-02-12 頒布 [2019-03-21廢止]。

4. 經濟部,風力發電離岸系統示範獎勵辦法,2012-07-03 頒布 [2019-07-08修正]。

5. 維基百科:台灣風力發電. https://www.wikiwand.com/zh-mo/%E5%8F%B0%E7%81%A3%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB.

6. Knopper LD, Ollson CA. Health effects and wind turbines: A review of the literature. Environmental Health 2011; 10:78.

7. Schmidt JH, Klokker M. Health effects related to wind turbine noise exposure: A systematic review. Plos One 2014; 9(12):e114183.

8. Farboud A, Crunkhorn R, Trinidade A. “Wind turbine syndrome”: fact or fiction? The Journal of Laryngology and Otology 2013; 127(3):222-226.

9. Kageyama T, Yano T, Kuwano S, Sueoka S, Tachibana H. Exposure-response relationship of wind turbine noise with self-reported symptoms of sleep and health problems: A nationwide socioacoustic survey in Japan. Noise and Health 2016; 18(81):53-61.

10. Barry R, Sulsky SI, Kreiger N. Using residential proximity to wind turbines as an alternative exposure measure to investigate the association between wind turbines and human health. The Journal of the Acoustical Society of America 2018; 143: 3278.

11. Pawlaczyk-Łuszczyńska M, Zaborowski K, Dudarewicz A, Zamojska-Daniszewska M, Waszkowska M. Response to noise emitted by wind farms in people living in nearby areas. International Journal of Environmental Research and Public Health 2018; 15:1575.

12. Bräuner EV, Jørgensen JT, Duun-Henriksen AK, Backalarz C, Laursen JE, Pedersen TH, Simonsen MK, Andersen ZJ. Long-term wind turbine noise exposure and incidence of myocardial infarction in the Danish nurse cohort. Environment International 2018; 121:794-802.15:1575.

13. Jeffery RD, Krogh C, Horner B. Adverse health effects of industrial wind turbines. Canadian Family Physician 2013; 59:473-475.

14. Chiu CH, Lung SCC. Assessment of low-frequency noise from wind turbines under different weather conditions. Journal of Environmental Health Science and Engineering 2020; 15:505-514.

15. Chiu CH, Lung SCC, Chen N, Hwang JS, Tsou MCM. Effects of low-frequency noise from wind turbines on heart rate variability in healthy individuals. Scientific Reports 2021; 11:17817.

16. McCunney RJ, Mundt KA, Colby WD, Dobie R, Kaliski K, Blais M. Wind turbines and health: A critical review of the scientific literature. Journal of Occupational and Environmental Medicine 2014; 56(11):e108-e130.

17. Pleban D, Radosz J, Smagowska B. Noise and infrasonic noise at workplaces in a wind farm. Archives of Acoustics 2017; 42(3):491-498.

18. Abbasi M, Monazzam MR, Zakerian SA, Ebrahimi MH, Dehghan SF, Akbarzadeh A. Assessment of noise effects of wind turbine on the general health of staff at wind farm of Manjil, Iran. Journal of Low Frequency Noise, Vibration and Active Control 2016; 35(1):91-98.

19. Monazzam MR, Zakerian SA, Kazemi Z, Ebrahimi MH, Ghaljahi M, Mehri A, Afkhaminia F, Abbasi M. Investigation of occupational noise annoyance in a wind turbine power plant. Journal of Low Frequency Noise, Vibration and Active Control 2018;38(2):798-807.

20. Velasco Garrido M, Mette J, MacHe S, Harth V, Preisser AM. Sleep quality of offshore wind farm workers in the German exclusive economic zone: a cross-sectional study. BMJ Open 2018; 8(11):e024006.

21. Chang TY, Su TC, Lin SY, Jain RM, Chan CC. Effects of occupational noise exposure on 24-hour ambulatory vascular properties in male workers. Environmental Health Perspectives 2007; 115(11):1660-1664.

22. Nguyen DP, Hansen K, Zajamsek B. Human perception of wind farm vibration. Journal of Low Frequency Noise, Vibration and Active Control 2019; 39(1):17-27.

23. McCallum LC, Whitfield Aslund ML, Knopper LD, Ferguson GM, Ollson CA. Measuring electromagnetic fields (EMF) around wind turbines in Canada: Is there a human health concern? Environmental Health: A Global Access Science Source 2014; 13(1):1-8.

24. Alexias A, Kiouvrekis Y, Tyrakis C, Alkhorayef M, Sulieman A, Tsougos I, Theodorou K, Kappas C. Extremely low frequency electromagnetic field exposure measurement in the vicinity of wind turbines. Radiation Protection Dosimetry 2020; 189(3):395-400.

25. Mccague AB, Cox-Ganser JM, Harney JM, Alwis KU, Blount BC, Cummings KJ, Edwards N, Kreiss K. Styrene-associated health outcomes at a windblade manufacturing plant. American Journal of Industrial Medicine 2015; 58(11):1150-1159.

26. Yang HY, Shie RH, Chen PC. Hearing loss in workers exposed to epoxy adhesives and noise: a cross-sectional study. BMJ Open 2016; 6(2).

27. Garolera AC, Madsen SF, Nissim M, Myers JD, Holboell J. Lightning damage to wind turbine blades from wind farms in the U.S. IEEE Transactions on Power Delivery 2016; 31(3):1043-1049.

28. Xiang J, Bi P, Pisaniello D, Hansen A. Health impacts of workplace heat exposure: An epidemiological review. Industrial Health 2014; 52(2):91-101.

下載PDF檔